SYNTHESIS OF ETHYL $\alpha-(DIETHYLPHOSPHONO)$ ACRYLATE AND ITS HOMOLOGS: VERSATILE SYNTHETIC REAGENTS

Junya IDE, * Rokuro ENDO, and Shigeki MURAMATSU Central Research Laboratories, Sankyo Co., Ltd. 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140

Ethyl α -(diethylphosphono)acrylate ($\underline{2a}$) and ethyl β -methyl- α -(diethylphosphono)acrylates (\underline{E} - $\underline{2b}$ and \underline{Z} - $\underline{2b}$) were prepared. The cycloaddition reaction of $\underline{2a}$ with salicylaldehyde gave 3-ethoxy-carbonyl-3-chromenes ($\underline{9}$).

Vinyl triphenylphosphonium bromide ($\underline{1}$) is a versatile synthetic reagent which supplies a two carbon unit required for the construction of heterocyclic and carbocyclic rings by Michael addition and subsequent intramolecular Wittig reaction. Ethyl α -(diethylphosphono)acrylate ($\underline{2a}$) is expected to possess a functionality similar to $\underline{1}$, and the cycloaddition products derived from $\underline{2}$ (vide infra) provide an α , β -unsaturated carboxylate moiety as a functional group for their chemical transformation into more complex compounds.

Some ethyl α -(diethylphosphono)acrylates with a substituent at β -position were prepared from corresponding aldehydes and triethyl phosphonoacetate in the presence of titanium(IV) chloride by Lehnert. Ethyl α -(diethylphosphono)-acrylate ($\underline{2a}$), however, could not be obtained according to Lehnert's method. We have found a facile method for the synthesis of $\underline{2a}$ and ethyl β -methyl- α -(diethylphosphono)acrylate ($\underline{2b}$). Recent appearance of the literature $\underline{4}$) on $\underline{2a}$ prompted us to report our results in a preliminary form.

Iodination of sodium triethyl phosphonoacetate ($\underline{3}$) in dimethoxyethane (DME) with iodine (1 eq., 0°C, 10min.) gave triethyl α -iodophosphonoacetate ($\underline{4}$), which, without isolation, was treated successively with sodium hydride (1.1 eq.,

 $0^{\circ}C$, 15 min.) and methyl iodide (1.2 eq., $0^{\circ}C$, 30 min. then ambient temp., 1.5 hr) to afford the methylated phosphonate 5a [70% yield from 3, v_{max} (neat) cm⁻¹: 1730, 1240, 1045, 1020; δ (CDC1₃) ppm: 1.31(3H, t, J=7 Hz, $CO_2CH_2C\underline{H}_3$), 1.38(6H, t, J=7 Hz, $P(0)(OCH_2CH_3)_2$), 2.27(3H, d, $J_{PCCH}=15$ Hz, $^{5)}$ CH₃), 4.27(2H, q, J=7 Hz, $CO_2CH_2CH_3$), 4.20(4H, dq, $J_{POCH}=8$ and J=7 Hz, $P(0)(0CH_2CH_3)_2$); m/e 364 (M⁺)]. Treatment of $\underline{5a}$ with sodium thiophenolate (1.05 eq., $0^{\circ}C$ to ambient temp., 1.5 hr) in DME gave the phenyl sulfide $\underline{6a}$ [66% yield, v_{max} (neat) cm⁻¹: 1730, 1260, 1045, 1020; δ (CDC1₃) ppm: 1.23(3H, t, J=7 Hz, $CO_2CH_2C\underline{H}_3$), 1.36(6H, t, J=7 Hz, $P(0)(0CH_{2}C\underline{H}_{3})_{2}), 1.56(3H, d, J_{PCCH}=12~Hz, CH_{3}), 4.25(6H, m, CO_{2}C\underline{H}_{2}CH_{3}~and~P(0))$ $(OCH_2CH_3)_2$, 7.5(5H, m, C_6H_5S); m/e 346 (M⁺)]. The phenyl sulfide <u>6a</u> was oxidized with sodium periodate (1.2 eq.) in aq. methanol (ambient temp., 16 hr) to the corresponding sulfoxide $\underline{7a}$ [97% yield, v_{max} (neat) cm⁻¹: 1740, 1260, 1050, 1025; m/e 362 (M^+)]. The sulfoxide 7a was heated under reflux in carbon tetrachloride to afford 2a [70% yield, v_{max} (neat) cm⁻¹: 1730, 1260, 1055, 1025; δ (CDC1₃) ppm: 1.33(9H, t, J=7 Hz, CO₂CH₂C \underline{H}_3 and P(0)(OCH₂C \underline{H}_3)₂), 4.35(2H, q, dd, $J_{PC=CH}=22$ Hz and J=2 Hz, PC=CH (cis)), 5) 7.07(1H, dd, $J_{PC=CH}=43$ Hz and J=2Hz, PC=CH (trans)); m/e 236 (M^+)].

Ethyl β -methyl- α -(diethylphosphono)acrylate (<u>2b</u>) was similarly prepared as a mixture of the E- and Z-isomers, which were separated by silica-gel chromatography [the E-isomer <u>E-2b</u>; δ (CDCl₃) ppm: 1.33(9H, t, J=7 Hz, CO₂CH₂CH₃

and P(0)(0CH₂CH₃)₂), 2.11(3H, dd, J=7 Hz and J_{PC=CCH}=3 Hz, CH₃), 4.28(6H, m, $CO_2CH_2CH_3$ and P(0)(0CH₂CH₃)₂), 7.30(1H, qd, J_{PC=CH}=24 Hz and J=7 Hz, C=CH), the Z-isomer \underline{Z} -2b; 1.33(9H, t, J=7 Hz, $CO_2CH_2CH_3$ and P(0)(0CH₂CH₃)₂), 2.30 (3H, dd, J=7 Hz and J_{PC=CCH}=3 Hz, CH₃), 4.18(6H, m, $CO_2CH_2CH_3$ and P(0)(0CH₂CH₃)₂), 7.70(1H, qd, J_{PC=CH}=46 Hz and J=7 Hz, C=CH)].

$$\begin{array}{ccc}
& & & \text{CH}_{3} & \text{C=C} \\
& & \text{CH}_{3} & \text{C=C} \\
& & \text{E-2b}
\end{array}$$

$$\begin{array}{ccc}
& & \text{CH}_{3} & \text{C=C} \\
& & \text{CO}_{2}\text{Et}
\end{array}$$

$$\begin{array}{cccc}
& & \text{CO}_{2}\text{Et}
\end{array}$$

As an example of the cycloaddition reactions, $\underline{2a}$ was subjected to reaction with sodium salt of salicylaldehydes ($\underline{8}$) to give 3-ethoxycarbonyl-3-chromenes ($\underline{9}$) (Table).

Table. Formation of $\underline{9}$ by Cycloaddition Reaction of $\underline{2a}$ with $\underline{8}$

X	Solvent		tion Time(hr)	Yield(%)	m.p.(°C)
Н	DMSO	r.t.	1	53	50-50.5
6-C1	DMSO-THF	r.t.	1	42	118-119
6-Br	DMSO-THF	r.t.	2	19	124-125

Acknowledgement: We express appreciation to Dr. N. Soma, Director of Fine Chemical Research in our Laboratories, for his encouragement throughout this work.

References and Notes

- * To whom correspondence should be addressed.
- 1) E. E. Schweizer, J. Liehr and D. J. Monaco, J. Org. Chem., 33, 2416 (1968) and references cited therein; J. M. McIntosch and G. M. Masse, ibid., 40, 1294 (1975) and references cited therein; W. G. Dauben and J. D. Robbins, Tetrahedron Lett., 151 (1975); I. Kawamoto, S. Muramatsu and Y. Yura, ibid., 4223 (1974).
- 2) W. Lehnert, Tetrahedron, <u>30</u>, 301 (1974).
- Russian chemists reported the synthesis of <u>2a</u> and <u>2b</u> from the corresponding aldehydes and triethyl phosphonoacetate in the presence of piperidine in methanol under reflux: A. N. Pudovik, G. E. Yastrebova and V. I. Nikitina, Zhurnal Obshchei Khimii, <u>37</u>, 2790 (1967), cf. C. A., <u>69</u>, 43992s (1968). However, the desired compounds could not be obtained by their method.
- 4) M. F. Semmelhack, J. C. Tomesch and A. Yamashita, Abstracts of papers:
 26th International Congress of Pure and Applied Chemistry, Sept. 4-10,
 1977, Tokyo, Session IV, p 1088; T. Minami, H. Suganuma and T. Agawa,
 Abstracts of papers: Symposium on Organic Sulfur and Phosphorous Compounds,
 Jan. 27-28, 1978, Osaka, p 65.
- 5) G. Mavel in "Annual Reports on NMR Spectroscopy" Vol. 5B, E. F. Mooney, Ed., Academic Press, London and New York, 1973, p 49; G. Mavel in "Progress in NMR Spectroscopy" Vol. 1, J. W. Emsley, J. Feeney and L. H. Sutcliffe, Ed., Pergamon Press, 1966, p 261.

(Received January 25, 1978)